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Abstract. Recommender systems often focus solely on optimizing user
engagement, which can lead to undesirable side-effects such as filter bub-
bles and lack of content diversity. While multi-objective optimization
could help balance these competing goals, its application to slate recom-
mendation — where multiple items are recommended simultaneously —
remains unexplored. This thesis investigates the use of multi-objective
reinforcement learning (MORL) to simultaneously optimize engagement
and diversity in slate recommendation. We extend the SARDINE simu-
lator to support multi-objective evaluation, and implement a novel com-
bination of Prediction-Guided MORL (PGMORL) with SAC+TopK for
slate construction. Through extensive experiments across different cata-
log sizes (100-1682 items) and slate sizes (3-20 items), we demonstrate
that our approach can effectively discover policies representing differ-
ent trade-offs between engagement and diversity. Results show that PG-
MORL consistently finds Pareto-optimal policies that dominate single-
objective approaches, though at increased computational cost. While our
method requires more resources than single-objective alternatives, its
runtime scales reasonably with slate size, making it a practical solution
for real-world recommendation scenarios. This work provides important
insights into the feasibility and challenges of multi-objective optimization
in slate recommendation systems.

Keywords: Slate Recommendation - Multi-Objective Reinforcement Learn-
ing - Recommender Systems.

1 Introduction

Recommender systems (RSs) personalize user experiences across platforms, such
as Netflix and Amazon, by filtering choices to align with user interests. While
effective, engagement-focused RSs may limit content diversity. Solely optimiz-
ing for engagement could have undesirable side-effects, e.g., espousing click-bait
content [21].

Enhancing the diversification of personalized recommendations, which caters
to a user’s wider range of interests.[42, 30, 5, 35, 21]. Furthermore, recommen-
dation diversity plays an important role in increasing user-satisfaction in the
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long-term, improving user experience, and it helps prevent the occurrence of
myopic recommendations [2, 25, 33]. Diversity is not the only feature of a rec-
ommendation that facilitates desired outcomes for a RS; novelty is important as
well [22]. Both metrics are fundamental metrics for RSs that go beyond engage-
ment [4], sometimes even promoting enhancement in the click rate [13].

Thus, despite an initial decrease in engagement, diversity improves the user
satisfaction over the long term. This increase in user satisfaction can be explained
using an example. Consider a user who frequently listens to classic rock bands
on Spotify. A recommender system optimizing solely for engagement will suggest
similar bands, missing potential interests in other genres. While recommending
more classic rock might maximize immediate engagement, it fails to account for
the user’s unexpressed interests in musical exploration. As this simple example
demonstrates, recommender algorithms operate on incomplete knowledge, bas-
ing their decision on a limited sample of user activity. Due to this uncertainty
in the user’s true interests, diversity and novelty are therefore good strategies to
help optimize the accuracy of a RS. This inherent desire in diversity and novelty
is furthermore confirmed by various consumer behavior studies highlighting the
variety seeking drive in human behavior [27, 32]. Novel and diverse recommen-
dations enhance the user experience by expanding their horizons and fostering
new interests [4].

Retaining diversity in recommendations is essential for long-term user en-
gagement and satisfaction. This recommendation problem can be approached
as a sequential decision-making process, modeled by a Markov Decision Process
[36]. Sequential decision problems can be modeled as a Markov Decision Pro-
cess (MDP). An MDP provides a framework for sequential decision-making with
states, actions, transition probabilities, and rewards, allowing an agent to maxi-
mize cumulative rewards over time [31]. In recommender systems, an action is a
recommended item, the state includes information about the environment (e.g.,
a user’s click history), and the reward signal reflects user behavior, which we aim
to optimize for sustained engagement. Reinforcement Learning (RL) algorithms
are effective for maximizing these long-term rewards.

In many Reinforcement Learning-based Recommender Systems (RLRSs), ac-
tions are defined as a single item to be recommended. However, in practice, it
makes more sense to recommend a list or slate of items to a user simultaneously,
as illustrated in figure 1. Slate recommendation gives humans the opportunity
to be part of the decision process.

In the field of slate recommendation, previous research has explored various
approaches to improve recommendation quality. While some methods implic-
itly consider multiple aspects of recommendation quality [23], no research has
yet explicitly optimized multiple objectives simultaneously using slate RLRSs.
This is particularly relevant for slate recommendation, as recommending multi-
ple items simultaneously provides natural opportunities to optimize for objec-
tives like diversity—the variety of items within a slate can be directly measured
and optimized. Different combinations of items may lead to different short and
long-term outcomes, making the explicit optimization of multiple objectives par-
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Fig. 1: Diagram showing the difference between regular RLRS and slate RLRS*

ticularly promising for improving overall recommendation performance. In this
work, we present the first implementation of explicit multi-objective optimiza-
tion for slate recommendation using RL, allowing for direct trade-offs between
engagement and diversity objectives. We extend the SARDINE simulator [12] to
support multi-objective evaluation, enabling comprehensive testing of trade-offs
between engagement and diversity in slate recommendation. Through empirical
evaluation, we demonstrate the effectiveness of our approach in balancing these
competing objectives. Now is the right time to develop a feasible multi-objective
approach system for slate recommenders. Therefore, in this paper we propose to
answer the following research question:

Research Question

How can multi-objective reinforcement learning be
used to simultaneously optimize engagement and
diversity in slate recommenders?

While our initial goal encompassed three objectives, we focus on optimizing en-
gagement and diversity in this work. This decision was made for two reasons:
first, effectively balancing as little as two objectives in slate recommendation
presents significant challenges, and second, these two objectives represent a fun-
damental tension in recommender systems - between maximizing immediate user
engagement and maintaining recommendation diversity. Our findings with two
objectives provide important insights that can inform future work on three or
more objectives. In order to answer the main research questions, we answer the
following questions in our experiments:

RQ1 How effectively does a multi-objective reinforcement learning approach
balance multiple objectives (engagement and diversity) compared to single-
objective methods?

! Created by the author.
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RQ2 How scalable is this approach for larger item catalogs and different
slate sizes?

In order to optimize multiple objectives simultaneously, we use an existing
method introduced by Xu et al. [41] to simultaneously optimize weights using
Prediction-Guided Multi-Objective Reinforcement Learning (PGMORL). This
method efficiently finds Pareto-optimal policies through a prediction-guided evo-
lutionary strategy, making it particularly suitable for continuous action spaces,
which is what we are dealing with. We conduct experiments using a simulator
based on synthetic and semi-synthetic embeddings (further explained in 3.3) to
demonstrate the usefulness of the introduced model on handling multiple objec-
tives in a dynamic and interactive environment.

2 Related Work

This section provides an overview of related work in the field of slate recom-
mendation, Multi-Objective RL (MORL), and the evaluation methods in these
works.

2.1 Slate recommendation

The field of slate recommendation has evolved from early theoretical frameworks
to modern scalable approaches. Milani Fard and Pineau [28] first formalized the
concept of recommending multiple items simultaneously in an MDP, allowing
users to make the final selection and guaranteeing near-optimal policies. While
groundbreaking, their approach faced scalability challenges in large state spaces,
which is a fundamental problem of slate recommendation [1]. For example, with a
slate size of 8 and an item catalog containing 1000 items, the number of possible
slates would be approximately 9.7 x 1023,

Subsequent research focused on addressing these scalability limitations. Sune-
hag et al. [39] introduced applied deep RL techniques to handle larger action
spaces. Their approach successfully handled high-dimensional state and action
spaces, but the computational cost of repeatedly evaluating the value function
for each slate position made it challenging for real-time industry applications. Ie
et al. [20] later introduced a more scalable solution through slate decomposition.

A recent breakthrough came from Deffayet et al. [10] who proposed GeMS,
representing slates in a continuous latent space using variational auto-encoders.
This approach offers superior scalability and generalization compared to previous
methods, though it requires logged interaction data.

This evolution of approaches reflects the field’s progress in addressing the
fundamental challenge of slate recommendation: maintaining recommendation
quality while scaling to large action spaces. Each advancement has traded off
different constraints, from computational feasibility to modeling assumptions, in
pursuit of practical, effective slate recommendation systems.
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2.2 Multi-Objective Reinforcement Learning in Recommendation

While MORL has shown promise in various domains, its application to slate
recommendation remains limited. The only previous work in this space by Keat
et al. [23] employed a single-policy approach with predetermined linear scalar-
ization. Their method showed improvements in balancing engagement and di-
versity but lacked flexibility in adapting to changing user preferences. According
to the guidelines laid out by Hayes et al. [17], a multi-policy approach is more
appropriate when the utility function is not fixed or known in advance. Apply-
ing this insight to recommender systems suggests that a multi-policy method,
which explores different trade-offs between objectives, provides more flexibility
and robustness in adapting to changing user needs.

Prediction Guided MORL (PGMORL) [41] represents a significant advance-
ment in multi-objective reinforcement learning, offering dynamic trade-off adap-
tation through a multi-policy approach. However, it has not yet been applied to
the slate recommendation problem.

2.3 Research Gap and our Approach

Our analysis of existing work reveals several key opportunities in the field. While
GeMS offers an efficient solution for slate representation and generation, and
PGMORL provides sophisticated multi-objective optimization, no existing work
has successfully combined these approaches for slate recommendation. We’ve
identified a significant integration opportunity wherein GeMS’s latent represen-
tation can be effectively leveraged within PGMORL’s framework, while multi-
objective optimization can enhance slate recommendation, ultimately offering
potential for more flexible and adaptable recommendations. PGMORL’s ability
to handle continuous action spaces makes it particularly suitable for integra-
tion with GeMS’s latent slate representations. Our work aims to bridge this gap
through two primary contributions: first, by integrating GeMS’s slate represen-
tation with PGMORL’s multi-objective optimization, and second, by evaluating
the effectiveness of this combination for slate recommendation while analyzing
the trade-offs between different objectives in this combined approach. Our work
addresses this gap by implementing and evaluating this combination, providing
empirical insights into how modern multi-objective optimization techniques per-
form in slate recommendation scenarios. This implementation allows us to study
important practical questions about the trade-offs between engagement and di-
versity in slate recommendation, and how effectively these can be balanced using
state-of-the-art methods.

3 Background

This chapter introduces the fundamental concepts needed to understand multi-
objective slate recommendation: the mathematical framework of Multi-Objective
Markov Decision Processes (MOMDP), principles of multi-objective optimiza-
tion, and approaches to RL evaluation. These concepts form the theoretical
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foundation for our proposed approach to optimizing multiple objectives in slate
recommendation systems.

3.1 Notations and Problem Formulation

We define a slate recommendation scenario where a user interacts with a recom-
mender system (RS). The goal of this system is to optimize long-term engage-
ment while also retaining diversity and novelty in the recommendations. We can
optimize these goals by defining them as a separate objective for our system to
optimize for. We define a Multi Objective Markov Decision Process (MOMDP)
as a tuple (S, A, P,R, ), where:

e state s € S represents the user state and summarizes information about the
past click behavior.

e action a; € A corresponds to a tuple (slate) containing the items (if, ..., i})
where (i])1<j<k are items from the collection Z and k is the size of the slate.
Each tuple a; has a corresponding click tuple ¢; = (cf,. .. ,Cf),cz e {0, 1},
which signifies the click behavior of a user at time step t. The size of all

possible slates is of a combinatorial nature: |A4| = %

e Transition probabilities P: S x A x § — [0, 1]

e The reward function R : § x A — R" describes a vector of n rewards,
one for each objective. This is in contrast to a regular MDP, where the
reward function usually outputs a scalar. In this scenario, there are in total
3 objectives: engagement, diversity, and novelty. At state s;_;, a reward
vector 1y = [pen9rgement Ldiversity] g peturned.

Consequently, the value function V™ € R" specifies the expected cumulative
discounted reward vector following policy =:

.
VT =E > Ariei [ ms =s (1)
k=0

V7™ defines the long-term value accumulated over T steps for engagement, diver-
sity, and novelty. The values in this vector represent the long-term value for the
respective objective. A high value for the objectives novelty and diversity in V™
indicates that policy 7 generates diverse and novel recommendations.

Optimizing for V™ is not possible in the same way as for a single objective
value function, as there is no unique optimal value V™ [34, 17]. In fact, an
increase in item diversity could lead to a decrease in engagement [23].

In order to optimize these objectives simultaneously, we use a linear scalar-
ization function f that projects the multi-objective value V™ to a scalar value:

Ve = f(V7(5),w) = w'V7(s) (2)

w signifying a set of weights for each objective. This scalar value can be optimized
for different weights for the respective objectives w. Unlike in single objective
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optimization, a solution set is found where all objectives are optimized without
being detrimental to the performance on other objective, i.e. Pareto optimal [17].
This set containing such policies is called a coverage set (CS):

CS(IT) C U(IT) A (Yu,3r € CS(ID),¥n' € I : u(V)™ > u(V™))  (3)

The coverage set is an approximation of what the pareto front would look like.
In order to evaluate the (CS), the hypervolume metric is used to determine to
compare the increase in accuracy of a Pareto-efficient solution compared to that
of a non-dominated reference V7, [17]:

HyperVolume(C'S, Vyef) = U Volume(Viyet, V™). (4)
weCS

Figure 2 Shows the example of how a multi-objective algorithm optimizes for
multiple policies.

Objective 2
Objective 2

Objective 1 Objective 1

Fig. 2: Visualization of the the coverage set in a two-objective space. The black
points represent the dominated set, illustrating solutions that are outperformed
by others. The red points show the coverage set, which is a subset of the Pareto
Front, capturing essential non-dominated policies necessary for optimal trade-
offs based on user preferences. The green points indicate new policies being added
to the coverage set, which results in an increased hypervolume, showcasing an
improvement in the solution space. Image adapted from Hayes et al. [17]

3.2 Diversity and Novelty objective definitions

Diversity [25] note that diversity should be considered during the recommenda-
tion process, instead of being applied after the recommendation process. There
have been many different ways of defining diversity in recommender systems.
The most widely used method is intra-list diversity (ILD) [43, 25], which mea-
sures the pairwise item diversity within a slate using a distance metrics such as
cosine distance, Jaccard distance or euclidean distance.
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Cui et al. [9] formulated diversity using Shannon’s entropy, in order to define
topic distributions inside a recommendation list. Shannon’s entropy measures
the uncertainty or randomness in a set of outcomes, which can be interpreted as
diversity in the context of topic distributions. Keat et al. [23] defined diversity
in their MORL-algorithm using a variant based on Shannon’s entropy.

Novelty Novelty has been defined as the inverse of popularity, signifying items
with few interactions [4]. Keat et al. [23] defined novelty in their work as an
objective using this definition. Ge et al. [15] Stated in their work that catalog
coverage can be defined by using the catalog coverage. Catalog coverage is a
measure that can be particularly helpful for systems to evaluate whether a system
over time recommends enough novel items. With small catalog sizes (j1000) it is
a good measure for whether the recommender system recommends enough novel
items over time [18].

3.3 Evaluating RL models

LJ
:." — Dataset M) m
. A

(a) Offline RL: the agent is trained on a previously acquired dataset

Update policy

LJ
{(si: &y, s )}
——> (9]
1

(b) Online RL: While the agent is training, new data is acquired and stored in the
replay buffer

Fig. 3: The difference between online and offline RL.

RL-based systems can be trained using an online or offline approach. The
online approach, i.e. testing the agent in a real-life setting, is the most empirically
indicative method on whether a method works or not, but this approach has
many caveats. It is expensive, time consuming and training a policy in an online
environment hurts the user experience [26, 8]. Offline RL, as shown in figure
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3, involves training an RL agent on a historical dataset, and thus avoids these
practical issues. This however introduces its own challenges. This approach can
result in value overestimation, is susceptible to biases in logged data, and can lead
to myopic evaluation [14, 11]. Using a simulator for evaluation offers numerous
benefits:

e Supplementing real-world data in the recommender system (RS) training
and testing process with synthetic analogues in a simulated environment.
Preserving the privacy of real-world data [38],

Enabling counterfactual analysis.

Counteracting biases in datasets [6].

Allowing the testing of a new RS under different conditions and within var-
ious scenarios of user behavior [19].

While synthetic item embeddings are more convenient to acquire, they pro-
vide a less realistic representation of item catalogs. Semi-synthetic embeddings
partially address this by combining real item embeddings from existing datasets
with generated user embeddings based on assumed genre preferences. Though
this still represents a simplified version of real-world complexity, it provides a
controlled environment for systematic evaluation.

4 Methodology

This chapter describes our approach to multi-objective slate recommendation
and how we evaluate it. We first present our technical solution that combines
methods in the literature to optimize multi-objective slate recommendation. We
then detail our implementation choices and experimental design for evaluating
the effectiveness of this approach.

4.1 Base Algorithms

Soft Actor-Critic (SAC) is an off-policy actor-critic algorithm that optimizes
expected reward while maximizing entropy [16]. Its off-policy learning provides
sample efficiency and entropy maximization maintains stability, making it partic-
ularly suitable for continuous action spaces. SAC can be combined with GeMS,
allowing SAC to operate in the slate encoded latent space.

Prediction Guided MORL (PGMORL), introduced by Xu et al. [41], main-
tains a population of policies and uses a prediction-guided evolutionary strategy
to find Pareto-optimal policies. In each generation, it fits analytical models to
predict potential improvements and selects the most promising policy-weight
combinations to optimize. The original PGMORL implementation used PPO as
its base RL algorithm. For our slate recommendation problem, we replace PPO
with SAC+GeMS while keeping PGMORL’s evolutionary and prediction mech-
anisms,as SAC provides better sample efficiency through off-policy learning and
effectively handles continuous action spaces.
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4.2 Multi-Objective Slate Optimization

Our approach combines PGMORL with SAC+GeMS to optimize both engage-
ment, diversity, and novelty objectives in slate recommendation. We use PG-
MORL’s framework to maintain a population of policies, each optimizing for
different trade-offs between these objectives. While the original PGMORL used
PPO, we adopt SAC as our base RL algorithm for its sample efficiency in contin-
uous action spaces. In each generation of training, PGMORL’s prediction model
identifies promising policy-weight combinations that could improve our current
Pareto front. Selected policies are then optimized using SAC with their cor-
responding objective weights, where SAC generates a continuous action which
is converted to a slate using TopK selection. This combination leverages PG-
MORL’s ability to find diverse Pareto-optimal policies while using SAC+GeMS
efficient slate construction mechanism. The result is a set of policies that offer
different trade-offs between engagement, diversity, and novelty objectives.

To evaluate our approach in a controlled yet realistic environment, we extend
the SARDINE simulator [12] to support multi-objective optimization. While
SARDINE was originally designed for single-objective slate recommendation,
we adapt it to provide reward signals for both engagement and diversity objec-
tives, allowing us to test the long-term effects of our multi-objective optimization
approach.

4.3 Preliminary Analysis and Method Selection

Our initial approach aimed to combine GeMS’s latent slate representation with
PGMORL for multi-objective optimization. However, despite extensive pretrain-
ing efforts, our implementation of SAC+GeMS showed unexpectedly low engage-
ment metrics. While GeMS demonstrated promising results in the original paper
by Deffayet et al. [10], we were unable to replicate this success in our setup,
despite doing an extensive parameter grid search on hyperparameters § and
~. Given these challenges, we pivoted to using SAC+TopK as our foundation,
which showed more reliable performance during training. This led to our final
approach: integrating PGMORL with SAC+TopK to create a multi-objective
slate recommendation system. SAC+TopK, also introduced by Deffayet et al.
[10], takes a simpler approach where SAC outputs a continuous action in the
item embedding space, and the k items closest to this embedding (according to
dot product) are selected for the slate. This provides a computationally efficient
way to handle slate construction and is used instead used to form the proposed
multi-objective solution.

4.4 Reward signals

Engagement corresponds to the amount of interaction that a user has with a
system. This can be defined as dwell time, click rate and session length [1, 45].
In this scenario, we define the reward signal for the engagement objective simply
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as the amount of clicks within a recommended slate, following convention [10]:

clzcks Z e, (5)

We define the reward signal for diversity using ILD, with cosine distance as
our distance metric. The reward signal for diversity is defined using a distance
based similarity approach, as introduced by Ziegler et al. [44], commonly called
Intra-List Diversity, signifying the average distance between two items within a
list. This approach is one of the most used ways to define diversity metrics [40,

25, 4]:
div _
rytt = di 6
t |at| |at|7 Z Z j ( )

i€at jEay

Where d is a distance measure. We will use the cosine distance. This measure
is frequently used for items represented as topic vectors, and it is sensible to do
so, since items are rated on a continuous scale from 0 to 1 whether to ascribe
topic proclivity. This cosine distance has also been used by Anderson et al. [2]
for calculating the distance between topic vectors.

5 Experimental design

In this section, we detail the experimental setup designed to comprehensively
evaluate our proposed multi-objective approach for multi-objective slate recom-
mendation. The experiments are structured to examine how well PGMORL can
balance engagement and diversity as simultaneous objectives (RQ1) when com-
pared to methods that focus on single objectives. Additionally, we investigate
the scalability of this approach in the realm of CPU and GPU memory usage,
and runtime (RQ2), particularly its effectiveness when applied to larger item
catalogs and various slate sizes.

5.1 Environment

As explained by the reasons noted in section 3.3, We use the SARDINE simula-
tor for our experiments (figure 4), which provides a controlled recommendation
environment with dynamic user behavior. Semi-synthetic datasets are used, com-
bining item embeddings from the MovieLens-100k (ML-100k) dataset (100,000
ratings from 1000 users on 1682 movies) [29] with generated user embeddings
(more information on the MovieLens-100k dataset can be found in Appendix
A.4). Ttem embeddings can be directly obtained from item-topic assignments
from the datasets. The simulator implements a click model based on relevance
scoring which includes a boredom mechanism to penalize short-term recommen-
dation strategies (see Appendix A.2 for implementation details). User behavior
is modeled through topic-based preferences and click probabilities (Appendix
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A.1), creating a dynamic environment suitable for evaluating long-term recom-
mendation strategies. The generation of user embeddings and specific parameter
settings are detailed in Appendix A.3.

The catalog size is within the magnitude of current RL-based slate recom-
mender systems (= 1000). The simulator replicates a recommendation platform
where users are recommended a slate of movies based on their historical prefer-
ences.

SARDINE
environment

Item embedding
matrix

/ [
slate item

slate o Fetch slate item embeddings Compute item
Recommendation % embeddings > relevance scores € ]

agent ) )

Session-specific

D relevance user embedding
scores

m rewards A

A

Sample slate clicks

a—
T oawe Y
-
Apply boredom &
/ : Influence effects Updated

user
Click model embedding

Fig.4: Diagram summarizing the different components of the SARDINE simu-
lator.

Using this simulator and basing our environment on it using synthetic and
semi-synthetic datasets will contribute to our goal to test the feasibility of bal-
ancing multiple objectives in a dynamic recommendation setting.

5.2 Baselines

To assess the performance of the MORL agent, we compare it against state-
of-the-art baselines that are available in the field of RL-based recommender
systems. As no other MORL technique has been proposed in earlier slate RLRS
work, we can only compare it to Single objective algorithms:

1. Single-Objective SAC: A Soft-Actor Critic (SAC) agent optimizing solely
for one objective, representing a standard single-objective RL approach. An
off-policy actor-critic deep RL algorithm that optimizes the expected re-
ward while also maximizing entropy [16]. To compare this baseline with the
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Multi-Objective method, two variants with different reward signals are in-
cluded: one applying the diversity reward signal (ILD) and the other with
engagement reward signal (clicks).

2. REINFORCE: This algorithm employs a simple yet effective policy gra-
dient method, which has been scaled to handle millions of items in the im-
plementation of Chen et al. [7]. The model estimates the value of individual
items rather than taking into account the full slate, in a similar vein to [20].

3. Random: A naive baseline that generates slates randomly, serving as a lower
bound on performance.

4. Short-Term Greedy Oracle: This baseline maximizes immediate reward
by picking the optimal slate maximizing the relevance function defined in
section 5.1. In a non-dynamic setting (i.e. user shows no dynamic behavior
like boredom), this model serves as a theoretical max.

5.3 Scalability Tests

In order to evaluate the formation of the pareto front of the MORL algorithm
(RQ1) and scalability of this approach (RQ2), we vary both the catalog size |Z|
and slate size k:

— Catalog sizes Z: 100, 500, 1000, 1682 (ml-100k dataset) items. We use both
purely synthetic data and semi-synthetic data based on the MovieLens dataset
to cover a range of catalog sizes.

— Slate sizes k: 3, 10, 20 recommended items. These slate sizes cover typical
real-world scenarios, from small carousels to full pages of recommendations.

5.4 Training protocol

Each algorithm is trained for 500,000 steps, witch one episode representing a
user traversing 7 = 100 recommendation moments (steps). The reason for this
set number is because previous research [10] conducted showed that this is an
adequate amount of training steps for most baselines to achieve a good return on
objective, and we furthermore want to test which model is most sample efficient.
Every 5,000 training steps, the agents are tested on a validation set of 25 user
trajectories. To assess statistical significance, we run each experimental baseline
with 5 different random seeds. In the case of single-objective agents, the model
checkpoint giving the highest return on the validation episodes is tested on 500
test-user trajectories. In the case of PGMORL, the resulting non-dominating
policies are tested on 500 test-user trajectories as well.

Experiments are run using the DAS-6 cluster [3]. Each experiment was on
a dedicated machine with an A4000 GPU while not peforming any other tasks.
The amount of used GPU memory and CPU memory are logged in consistent
intervals during training.

To answer our research question RQ1, we compare the Pareto front of our
proposed MORL approach versus the baselines to assess the effectiveness of
multi-objective optimization. For RQ2, we compare the evaluation metrics for
this RQ over slate size 3, 10, and 20.
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5.5 Evaluation metrics

RQ1 Engagement is evaluated on the long-term value generated on the click
reward signal, namely the cumulative clicks:
Long-term Engagement = Y rfiq® (7)
k=1

This corresponds to the value function for the engagement objective with
v=1.

Diversity is evaluated by determining the average intra-list diversity over all
evaluated users.

Average ILD = |U| Z Z div (8)

uelU Tu tETy,

With U signifying the array of evaluated users.

Novelty is defined as catalog coverage and reflects the degree to which the
generated recommendations cover the catalog of available items [15]. The catalog
coverage, defined as the percentage of available items which are recommended
to a user is defined as follows:

7,
Catalog coverage = Uiy T Ut—lmN | 9)
Even though the return for this objective is not optimized using our MORL
solution, we will log data so that we can investigate the effects of optimizing
diversity and engagement on this objective.

RQ2 During training, the GPU and CPU memory usage will be logged, defined
in Gigabytes (GB). Furthermore, runtime will be tracked in hours (h).

6 Results

Our experiments evaluate the effectiveness of PGMORL in optimizing multiple
objectives for slate recommendation (RQ1) and assess its scalability across dif-
ferent catalog and slate sizes (RQ2). We present our findings organized by our
key research questions.

6.1 Multi-Objective Optimization Performance (RQ1)

Figure 5 illustrates the performance trade-offs between diversity and engagement
(clicks), across different catalog sizes. Each point represents a different policy,
with numbers indicating the catalog coverage percentage achieved. More results
can be found in Appendix B.
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Fig.5: Charts illustrating the performance of the agents over multiple slate size
and item catalogs. The numbers next to the agent signify the catalog coverage

Pareto Front Analysis (RQ1) PGMORL consistently produces a clear Pareto
front across all catalog sizes (100-1682 items), demonstrating its ability to find
diverse trade-offs between objectives. The Pareto front shows that:

— Higher click rates generally come at the cost of reduced diversity, confirming

the inherent tension between these objectives

— PGMORL discovers policies spanning from high-diversity /low-clicks to high-
clicks/low-diversity, offering flexible deployment options

— The single-objective baselines (SAC-GeMS and SAC-top K) typically appear
as individual points near the extremes of the Pareto front
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When compared to the baselines, we found that a random policy achieves the
highest diversity while the Greedy Oracle achieves the highest click rate, at the
cost of diversity. These results are in line with our expectations.

— Random policy achieves high diversity but poor engagement across all con-
figurations

— Greedy Oracle achieves high click rates but at the cost of diversity

— REINFORCE performs similarly to SAC variants but with slightly lower
performance in both objectives

— PGMORL consistently finds policies that dominate single-objective approaches
in terms of Pareto efficiency for small catalog sizes.

6.2 Scalability Analysis (RQ2)

Table 1 presents the computational cost across different approaches:

Agent Training Peak  GPU|Average Peak  CPU|Average
time (h) Memory GPU Mem-|Memory CPU Mem-
Usage (GB) |ory Usage|Usage (GB) |ory Usage
(GB) (GB)
PGMORL 2.53 60.72 47.66 27.79 18.71
SAC-GeMS  |1.17 7.66 3.68 6.22 5.69
SAC-top K 1.66 6.62 6.61 5.88 5.67
REINFORCE |1.11 10.53 10.52 5.40 5.16
HAC 1.8 9.09 8.79 5.49 5.36
Random 0.03 0.00 0.00 0.02 0.08
Greedy Oracle|0.03 0.00 0.00 0.02 0.08

Table 1: Average training time and other statistics on performance, run on
the synthetic item embeddings for slate size = 10, number of items = 100,
timesteps=500,000

Training Efficiency PGMORL requires significantly more training time (2.53
hours) compared to single-objective approaches (1.11-1.66 hours), while also
needing more memory (60.72 GB memory at peak). Single-objective methods
maintain relatively modes memory requirements (6-10 GB GPU memory at
peak). CPU memory usage follows a similar pattern, with PGMORL requiring 3-
5x more memory. CPU memory usage follows a similar pattern, with PGMORL
requiring 3-5x more memory.

Catalog Size Impact (RQ2) The plots in Figure 5 demonstrate how per-
formance scales across different catalog sizes: Performance patterns remain con-
sistent across catalog sizes, suggesting good scalability of the core algorithm.
Larger catalogs (1000-1682 items) show a wider range of trade-offs represented
by the solutions in comparison to smaller catalogs, while Smaller catalogs (100
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items) exhibit tighter clustering of solutions. This implies that the algorithm
explores a wider variety of optimal trade-offs as the catalog size increases.

6.3 Coverage Analysis

The catalog coverage results (annotated numbers in Figure 5) reveal that PG-
MORL policies achieve varying coverage levels (30-70%) depending on their posi-
tion on the Pareto front. Higher diversity policies generally correlate with higher
catalog coverage. Single-objective approaches tend to have lower coverage, par-
ticularly when optimizing for clicks alone. The random baseline achieves high
coverage but at the cost of other objectives, which is to be expected for a random
baseline. The greedy oracle recommends the items that have in the highest click
probability by definition, so the catalog coverage is naturally low.

6.4 Runtime Analysis Across Slate Sizes

Figure 6 shows the runtime performance across different slate sizes (3, 10, and
20) and catalog sizes (1000, 500, and 100 items). The runtime measurements
reveal several key patterns:

Impact of Slate Size All methods show increased runtime as slate size in-
creases, but with varying degrees of scaling. REINFORCE exhibits the steepest
increase in runtime, particularly for slate sizes greater than 10. PGMORL shows
moderate scaling, with runtime increasing roughly linearly with slate size. PG-
MORL maintains reasonable runtime, similar to SAC-topk growth despite han-
dling multiple objectives This is to be expected, as SAC-topk is implemented
in PGMORI. SAC-based methods (SAC-top-k and SAC-GeMS). SAC-GeMS
demonstrates the best scaling among learning-based methods, particularly for
larger slate sizes. The random and greedy oracle baselines maintain constant low
runtime regardless of slate size.

Catalog Size Effects Larger catalogs (1000 items, Fig. 6b) show more pro-
nounced runtime differences between methods. For medium-sized catalogs (500
items, Fig. 6b), the runtime gap between methods narrows.With small catalogs
(100 items, Fig. 6¢), the relative performance differences persist but with reduced
absolute differences.

Method-Specific Performance The results indicate that while PGMORL
requires more computational resources than single-objective methods (as shown
in Table 1), its runtime scaling with slate size remains manageable. This suggests
that PGMORL provides a practical solution for multi-objective optimization in
slate recommendation, even as the problem size increases. However, for very
large slate sizes (20+), additional optimization techniques may be necessary to
maintain reasonable computation times.
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Fig. 6: Runtime difference per slate size for all baselines

7 Conclusion

This work set out to investigate whether multi-objective reinforcement learning
can effectively balance multiple objectives simultaneously (RQ1) while also in-
vestigating its computational feasibility over a range of item catalog sizes and
slate sizes (RQ2).

while we have carefully constructed our methodology and experimental setup
to ensure these goals, several important limitations and considerations must be
addressed.

7.1 Limitations

A number of important limitations that may threaten the validity of the find-
ings in the experiments should be acknowledged. A significant limitation of this
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study is the use of ideal item embeddings in the experiments by the models. We
cannot assume the availability of such embeddings in a more realistic recom-
mender scenario. During testing, when the ideal item embeddings were replaced
by item embeddings learned by Matrix factorization [24], the recommendation
performance for all models was drastically reduced. Worse performance was to
be expected as is shown in previous work [10]. However, the models using MF-
embeddings were not performing better than the random baseline on all slate
size - catalog size configurations, which was worse than expected. In future work,
the sub-optimal results could be solved by training these embeddings on a larger
dataset, as 100,000 user trajectories is not sufficient for sufficient performance.

Secondly, while the simulator provides a controlled environment for testing,
it makes several simplifying assumptions about user behavior. One limitation is
that user boredom was modeled only through repeated exposure to the same
main topic, which restricts the portrayal of more complex interaction patterns.

The click model used in the experiments did not account for the influence
effect: user profiles remained static, except for the boredom effect, missing the
dynamic evolution of user interests. The reason for not using this interaction
pattern in the experiment is because using it would likely require additional
training time for the optimization of the objectives.

Furthermore, the ranking order of items within the recommended slate was
not accounted for in the experiment This means that the influence of item posi-
tions on user engagement was not taken into account, potentially impacting the
realism of user interaction modeling. In practical scenarios, users may exhibit
varying behaviors depending on the position of items within a slate, which can
affect click probabilities and overall engagement.

Additionally, it may be more challenging to analyze the interactions between
ranking and other objectives, such as diversity. a click model that reduces click
probability of an item based on its position in the slate is already available in
the Sardine simulator that could be used for future research [12]. More training
would be expected to be necessary for the models to optimize the objectives.

Moreover, user profiles remained static and did not change with repeated
item interactions, missing the dynamic evolution of user interests. Incorporating
such an influence effect could improve long-term outcome predictions and better
simulate dynamic real-world behavior.

This study assumes that each user trajectory lasts 100 recommendation steps.
Using this assumption, it was possible to find a part of the pareto front in the
case of PGMORL. In VirtualTaoBao, the user simulation had the possibility
to preemptively quit a session [37]. Implementing variable-length sessions could
introduce complexity but would enhance realism.

Similarly, distinguishing between different user types was omitted due to
added training requirements. In the work of Anderson et al., the difference was
noted between ”generalist” and ”specialist” users [2]. This notion could have
been an interesting way of implementing different types of users, but this was
not done, since this would have required additional training for the models to
optimize well. In future research, when evaluating the models, it would be in-
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teresting to take into account this notion of differing user types. An RL agent
could optimize this by prediction the possible user type which can be added as
information to the user state.

Despite the limitations discussed, our findings provide valuable insights into
the challenges and potential of multi-objective optimization in slate recommen-
dation. The balanced approach of PGMORL highlights its capability to manage
engagement and diversity effectively, setting the stage for further research to
address these complexities and refine the methodology for broader real-world
applications.

In this work, the assumption was made that the utility function is linear be-
tween the objectives. This however might not be true making a trade-off between
objectives in the case of diversity and engagement, one can argue that using a
linear weighting function might not reflect the actual relationship between these
two objectives. If users’ preferences are non-linear, a linear utility function is
unable to accurately represent these preferences [34].

While this work focused on optimizing engagement and diversity, future work
could extend our approach to include novelty as a third objective. Our results
suggest that handling multiple objectives in slate recommendation is challenging
but feasible, laying the groundwork for incorporating additional objectives.

7.2 Practical Implications

Despite these limitations, our findings have several important implications for
real-world recommender systems. The Pareto front of solutions enables system
operators to dynamically adjust the trade-off between objectives based on busi-
ness needs or user preferences. For instance, a streaming service could favor
diversity during content discovery phases while prioritizing engagement for per-
sonalized recommendations, all using the same underlying model.

This thesis introduced and evaluated a multi-objective reinforcement learn-
ing approach, PGMORL, for slate recommendation, aiming to balance engage-
ment and diversity. Our findings offer guidance for implementing multi-objective
slate recommendations, where diverse suggestions can enhance content discov-
ery and catalog usage. While PGMORL successfully identifies trade-offs be-
tween engagement and diversity, challenges remain in consistently producing
well-distributed Pareto fronts, particularly with larger catalogs. Although the
approach scales well with slate size, it requires more computational resources
than single-objective methods.
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A Simulator technical details

A.1 Click model Implementation

In the SARDINE simulator, a click model is used to represent the behavior
of a user. The relevance of items that are presented to a user based on their
interests is calculated by applying the dot-product to the user embedding and
item embedding:

topic relevance = rel(i,u) = e] e, (10)

Through this relevance score, the item attractiveness of item ¢ for user u is
calculated.

1

Au i = Q- a(rel(i, 'LL)) where O'(.T) = m
exp~ MEFT

; (11)
The attractiveness function is defined as a sigmoid function times «. hyperpa-
rameter o adjusts the range of the attractiveness score. In the sigmoid function,
A controls the steepness of the sigmoid curve, i.e., the larger the value, the steeper
the sigmoid will be. p is a shift parameter that ensures the outcome of the sig-
moid will be close to 1 if an item is highly matching to a user, and 0 if it is not
fitting for a user.

A.2 Boredom mechanism

In order to create a dynamic environment in which greedy algorithms do not
result in an optimal outcome. It is a reasonable assumption that a user’s interest
in said item decreases, as shown by Anderson et al. [2]. Deffayet et al. [12] defined
temporary-loss-of-interest boredom in their simulator. The user u who is bored
with respect to topic 1" has their user embedding component e, 7 set to 0 for ¢,
time steps. In this environment, ¢, is set to 5.

A.3 User embedding generation based on the ML-100k dataset

As described in the paper introducing SARDINE, [12], Topic interests for a user
u are sampled from a categorical non-uniform prior p;. the probability for a topic
j is defined as the ratio of the average number of likes for items with category j
divided by the average number of likes with any category.

17 e, #likes(i)

T (12)
Zj/ET ‘I]%‘ Z’ite/ #hkes(’[,)

pr(j) =
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A.4 Statistical information about MovieLens-100k dataset
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Fig. 7: Charts showing the probability for a user to have containing a topic in
their embedding and the topic distribution for the ML-100k dataset
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